Preliminary Monte Carlo Investigation of Using Ir-192 as the Source for Real Time Imaging Purpose.
نویسندگان
چکیده
The purpose of this study is to investigate the potential use of Ir-192 as the source for real time imaging during HDR (High Dose Rate) brachytherapy treatment. Phantom measurement was performed to determine outside of the body dose. Monte Carlo code, EGSnrcMP egs_inprz, was used for the simulation to calculate the outside of the body x-ray signal for CT reconstruction. Matlab code was developed to reconstruct the Ir-192 source and for 3D visualization in order to assess reconstructed CT resolution, signal-to-noise ratio, and imaging dose information. The measured dose was 0.67 ± 0.04 cGy, which was comparable to the Monte Carlo simulation result 0.71 ± 0.20 cGy. The reconstructed source diameter dimension was 1.3 mm compared with 1.1 mm for the real source dimension. The signal-to-noise ratio was 19.91 db following de-noising. Source position was within a 1 mm difference between programmed and simulated results. Although the Ir-192 signal is weak for CT imaging, it is possible to use it as a CT imaging x-ray source for HDR treatment localization, verification and dosimetry purposes. Further study is needed for the detailed design of an outside of the body CT-like device for use in brachytherapy imaging.
منابع مشابه
Dosimetric investigation of high dose rate Ir-192 source with Monte Carlo method
Background: This study aims to calculate the air-kerma strength (SK), the dose rate constant (∧) and the dose rate profiles of a Gammamed 12i Ir-192 source by using the Monte Carlo technique and to compare the dose rate values with those calculated by the Abacus HDR treatment planning system (TPS). Materials and Methods: Air-kerma strength (in units of U; 1 U= μGy m2 h-1) and the dose ra...
متن کاملMonte Carlo and experimental relative dose determination for an Iridium-192 source in water phantom
Background: Monte Carlo and experimental relative dose determination in a water phantom, due to a high dose rate (HDR) 192Ir source is presented for real energy spectrum and monochromatic at 356 keV. Materials and Methods: The dose distribution has been calculated around the 192Ir located in the center of 30 cm ×30 cm ×30 cm water phantom using MCNP4C code by Monte Carlo method. Relati...
متن کاملEffect of Gold Nanoparticles on Prostate Dose Distribution under Ir-192 Internal and 18 MV External Radiotherapy Procedures Using Gel Dosimetry and Monte Carlo Method
Background: Gel polymers are considered as new dosimeters for determining radiotherapy dose distribution in three dimensions.Objective: The ability of a new formulation of MAGIC-f polymer gel was assessed by experimental measurement and Monte Carlo (MC) method for studying the effect of gold nanoparticles (GNPs) in prostate dose distributions under the internal Ir-192 and external 18MV radiothe...
متن کاملComparison of Depth Dose Distributions Using Cerenkov Fiber-Optic Dosimeter and Monte Carlo Simulation for HDR Brachytherapy
In this study, we fabricated a Cerenkov fiber-optic dosimeter (CFOD) without any scintillator to measure Cerenkov radiation signals owing to gamma-rays. The relative depth dose (RDD) distributions of Ir-192 HDR brachytherapy source were obtained by using the CFOD based on a subtraction method and the RDD curve was compared with the simulation result of Monte Carlo N-particle extended transport ...
متن کاملCalculating of Dose Distribution in Tongue Brachytherapy by Different Radioisotopes using Monte Carlo Simulation and Comparing by Experimental Data
Introduction: Among different kinds of oral cavity cancers, the frequency of tongue cancer occurrence is more significant. Brachytherapy is the most common method to cure tongue cancers. Long sources are used in different techniques of tongue brachytherapy. The objective of this study is to asses the dose distribution around long sources, comparing different radioisotopes as brachytherapy sourc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of medical physics, clinical engineering and radiation oncology
دوره 6 1 شماره
صفحات -
تاریخ انتشار 2017